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Abstract

Misuses of -SNE and UMAP in visual analytics have become in-
creasingly common. For example, although ¢t-SNE and UMAP pro-
jections often do not faithfully reflect the original distances be-
tween clusters, practitioners frequently use them to investigate
inter-cluster relationships. We investigate why this misuse occurs,
and discuss methods to prevent it. To that end, we first review 136
papers to verify the prevalence of the misuse. We then interview
researchers who have used dimensionality reduction (DR) to un-
derstand why such misuse occurs. Finally, we interview DR experts
to examine why previous efforts failed to address the misuse. We
find that the misuse of t-SNE and UMAP stems primarily from
limited DR literacy among practitioners, and that existing attempts
to address this issue have been ineffective. Based on these insights,
we discuss potential paths forward, including the controversial
but pragmatic option of automating the selection of optimal DR
projections to prevent misleading analyses.
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1 Introduction

We look closely into a widely known phenomenon threatening the
reliability of visual analytics: the misuse of t-SNE and UMAP. When
practitioners refer to dimensionality reduction (DR) for visually
analyzing high-dimensional data, t-SNE and UMAP are the most
frequently applied techniques [11, 19, 34, 47, 75]. However, these
two techniques are also commonly misused in practice [8, 9, 16, 72].
For example, although #-SNE and UMAP do not accurately represent
global structures like distances between points [19, 33, 56, 72], they
are often used to investigate the dissimilarity between data points
or clusters [8, 9, 72]. Such misuse may introduce errors in visual
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analytics, which can further propagate through interconnected
visualizations in the systems and thus compromise their reliability.

We systematically investigate this misuse to understand how to
address it. First, we verify the existence of the misuse by review-
ing 136 visual analytics papers that utilize DR. Then, we conduct
interviews with 12 researchers who frequently use DR for visual
analytics purposes, including data visualization, machine learning,
and bioinformatics, to detail the underlying causes of the misuse.
As a final step, we interview eight DR researchers to understand
why previous attempts have hardly addressed the misuse.

Our findings indicate that the misuse mainly occurs because
practitioners have limited literacy of DR. For instance, several par-
ticipants in our first interview study perceive t-SNE and UMAP
to be “immune to criticism,” implying that both authors and re-
viewers lack sufficient knowledge on how to use DR appropriately.
Researchers across various domains have also sought to address
this problem by producing many papers that warn the weakness
of t-SNE and UMAP and that emphasize how to use DR properly
(Sect. 2.2). However, these approaches have proven ineffective, fail-
ing to motivate practitioners to engage with these materials for
enhancing DR literacy.

As a possible solution, we propose—although with some reluc-
tance, to delegate the selection of DR projections to machines. We
suggest automating the selection of optimal DR techniques and
hyperparameters for given analytical tasks and contexts. These
technical solutions enable practitioners to use DR effectively even
without sufficient DR expertise, but may undermine user agency
and discourage them from cultivating their DR literacy. We discuss
how to preserve agency while simultaneously preventing misuse
of DR techniques.

In summary, our research provides three key contributions:

We present a literature review and two interview studies
that investigate the misuse of t-SNE and UMAP.

We verify the existence of misuses and understand why the
existing approaches are ineffective in addressing the misuse.
We suggest delegating the selection of optimal DR projections
to automated systems as a viable solution and discuss the pros
and cons of this approach.

We hope this research will spark discussions and encourage more
appropriate use of not only DR but also other machine learning
techniques, ultimately enhancing the reliability of visual analytics.

2 Backgrounds and Related Work

We first present how the two DR techniques, -SNE and UMAP,
impact visual analytics research. We then detail previous efforts in
visualization, machine learning, and bioinformatics fields to address
this problem.
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Figure 1: Comparison of t-SNE, UMAP, densMAP [54], and UMATO [31] projections of a 2D dataset. Although t-SNE and UMAP
do not faithfully represent cluster density or distances between data points, they are often misused to analyze such structures.

Our research investigates why this misuse happens and explores strategies to address it. [This figure is interactive in Adobe

Acrobat reader, where the underlined texts can be clicked]

2.1 How ¢t-SNE and UMAP Impacts Visual
Analytics

We first explain DR, ¢-SNE, and UMAP. Then, we explain how the
two techniques influence visual analytics.

Dimensionality reduction. DR, e.g., t-SNE, UMAP, PCA [57],
is an essential tool for visually analyzing high-dimensional data
[18, 23, 34, 42, 56]. These techniques receive a high-dimensional
dataset as an input and produce a 2D representation that preserves
important characteristics (e.g., local neighborhood structure or
distances between clusters) of the original data. Using DR, any
high-dimensional data can be visualized using a single scatterplot.
Such effectiveness makes DR widely used for visual analytics across
diverse domains [8], including bioinformatics [14, 70], machine
learning [27, 38], and finance [12].

t-SNE. Since its first introduction in 2008 [66] as a variant of SNE
[26], t-SNE has become one of the most widely used DR techniques.
It projects a given high-dimensional data into a low-dimensional
space by minimizing the divergence between two distributions: one
representing pairwise similarities of the points in the original space
and the other in the low-dimensional space. By leveraging Student’s
t-distribution to model similarities in the low-dimensional space,
t-SNE significantly improves SNE in accurately capturing the local
neighborhood structure of the input data [45].

UMAP. This technique is introduced in 2018 [48] and has quickly
gained popularity in diverse fields, including visual analytics. UMAP
captures the local structure of high-dimensional data by construct-
ing a k-nearest neighbors (kNN) graph of the data. It then optimizes
a low-dimensional representation by minimizing the cross-entropy
between the fuzzy topological representations of kNN graphs in
the high and low-dimensional spaces.

Impact of t-SNE and UMAP in visual analytics. These two tech-
niques significantly influence the visualization and visual analytics
fields by motivating and grounding numerous follow-up studies. At
first, these techniques are frequently utilized in visual analytics sys-
tems [11, 47, 75]. These systems typically use projections to provide
an overview of the data, allowing users to select a subset of data

through interactions such as brushing. The systems then enable
detailed data exploration of the data subset using auxiliary visu-
alizations [22, 43, 64]. The visualization community also attempts
to accelerate these techniques using GPU [58, 65] or progressive
algorithms [37, 40] to make them more responsive. Furthermore,
the community improves the faithfulness of t-SNE and UMAP in
representing original high-dimensional data, e.g., by proposing new
variants [31, 50] or faithfulness metrics [30, 77].

Our contribution. Motivated by the widespread use of t-SNE and
UMAP in visual analytics, we aim to investigate and improve how
people use these techniques in practice. From our literature review
and interview studies, we identify the (1) common misuse of these
techniques within visual analytics, (2) the factors contributing to
this misuse, and (3) why previous approaches fall short in miti-
gating the misuse. We propose future directions that promote the
appropriate use of DR as a norm.

2.2 Previous Efforts to Address the Misuse

We identify literature from the visualization, machine learning, and
bioinformatics domains that contributes to addressing the misuse
of t-SNE and UMAP. These studies mostly conduct quantitative
experiments that compare the utility of different DR techniques
in supporting diverse analytic tasks. They also introduce a new
DR technique that overcomes the limitations of t-SNE and UMAP.
Another branch aims to inform the public about the weaknesses of
t-SNE and UMAP, providing guidelines to avoid the inappropriate
usage of these techniques.

Quantitative experiments. These works execute experiments to
compare the suitability of the projections generated by diverse DR
techniques on different analytic tasks. For example, Xia et al. [74]
conduct a user study to test the effectiveness of DR techniques in
supporting cluster analysis. They reveal that t-SNE and UMAP are
most effective for cluster identification tasks but poorly support
tasks like density comparison or distance comparison. Ventocilla
and Reveiro [69] investigate the alignment between human task
accuracy of cluster analysis and clustering metrics, leading to a
similar conclusion to Xia et al. [74]. Jeon et al. [33] conduct a study
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using their newly proposed quality metrics for DR, showing that
t-SNE and UMAP work poorly for investigating cluster density or
separability. Aligned with these results, Lause et al. [44] also show
the inappropriateness of t-SNE and UMAP in investigating global
cluster arrangement, focusing on single-cell RNA data.

Advanced DR techniques. Diverse research proposes new DR
techniques as alternatives to t-SNE and UMAP that mitigate their
weaknesses in accurately representing the original high-dimensional
data. Narayan et al. [54] verify that t-SNE and UMAP poorly rep-
resent cluster density and propose den-SNE and densMAP as al-
ternatives. Trimap [1], PacMAP [71], and UMATO [31] improve
UMAP in terms of capturing the global structure (e.g., pairwise
distances between data points) of the original data. Global t-SNE
[78] improves ¢-SNE in the same direction. Fig. 1 illustrates the
superiority of alternative techniques against t-SNE and UMAP in
preserving cluster density and distances between data points.

Guidelines for proper use of t-SNE and UMAP. These studies
inform the limitations of t-SNE and UMAP to the public, guiding
practitioners to use these techniques more appropriately. Watten-
berg et al. [72] provide guidance on appropriately using ¢-SNE, and
Coenen and Pearce [16] offer similar insights for UMAP. These
works caution practitioners against relying on the global structure
presented by t-SNE and UMAP and emphasize the substantial im-
pact of hyperparameter selection on the faithfulness of resulting
projections. Kobak et al. [41] show that initialization severely af-
fects the faithfulness of the resulting projection and recommend
using PCA for initializing t-SNE and UMAP. Chari and Pachter
[9] demonstrate the case to which -SNE and UMAP can lead to
unreliable exploratory analysis in bioinformatics.

Our contribution. These studies offer actionable guidance to properly
use t-SNE and UMAP along with the evidence that these techniques
are often susceptible to misuse. However, we reveal that despite
these efforts, both techniques are persistently misused. We identify
that this is because practitioners lack motivation to engage with the
literature, often due to the difficulty of reading papers. We therefore
propose automating the process of finding optimal projections for
analysis as a potential solution.

3 Research Objectives

We aim to contribute to addressing the misuse of -SNE and UMAP.
We set four research objectives to achieve this goal.

Verify the misuse of -SNE and UMAP. We want to find ev-
idence that -SNE and UMAP are widely used in visual analytics and
are more frequently misused than alternative techniques. We thus
want to provide a rationale for focusing on these two techniques.

Understand why practitioners misuse these techniques.
We aim to investigate the underlying cause of the misuse. This inves-
tigation grounds our suggestions for future directions to mitigate
the misuse ((@9).

Understand why previous efforts fall short in addressing
the misuse. We investigate why existing efforts have failed to
prevent the persistent misuse of t-SNE and UMAP. As with (@),
this investigation supports our suggestion of a new strategy to
overcome the limitations of previous approaches ({(8Z).
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(@ Introduce future strategies to promote the appropriate
use of DR. Finally, based on our findings, we want to introduce
new directions and action items to mitigate the misuse of t-SNE and
UMAP. We thereby contribute to enhancing the overall reliability
of DR-based visual analytics.

The remaining parts of this paper are dedicated to achieving
these objectives. First, we conduct a literature review (Sect. 4) on
visual analytics papers using DR to investigate the extent to which #-
SNE and UMAP are misused ({@1) We deepen our investigation on
misuse through an interview study with practitioners who regularly
use DR for their research (Sect. 5), observing the underlying causes
of the misuse ({(@). We then interview expert researchers who
study DR (Sect. 6) to obtain insights on why previous approaches
are not effective to mitigate the misuse ((@£)). Based on the findings,
we suggest future directions to remedy the misuse of ¢-SNE and
UMAP in visual analytics (Sect. 7; (O]).

4 Literature Review

We execute a literature review to confirm that t-SNE and UMAP are
commonly misused in visual analytics ({8B). We want to confirm
that (H1) t-SNE and UMAP dominate the use of DR techniques
in visual analytics, providing a rationale on why we focus on two
techniques. We also aim to hypothesize the existence of two types of
misuse: (H2) the use of t-SNE and UMAP for unsuitable tasks, and
(H3) the lack of appropriate justifications. In the following sections,
we first explain our protocol (Sect. 4.1). Then, in Sect. 4.2, we detail
the results of the paper review, including common analytic tasks
for DR and the reasoning behind the selection of DR techniques. In
Sect. 4.3, we examine the suitability of widely used DR techniques
for analytic tasks. Finally, in Sect. 4.4, we discuss our results that
confirm the hypotheses. We discuss our takeaways in Sect. 4.5.

4.1 Protocol

The review consists of four steps: paper search, categorization, task
suitability review, and quantitative analysis.

Paper Search. Our primary goal is to investigate the misuse of
t-SNE and UMAP in visual analytics. Hence, we search for pa-
pers that propose a visual analytics approach, framework, or sys-
tems incorporating DR. We query papers that satisfy two condi-
tions: (1) the term “visual analytics” or “visual analysis”
appears in the title or abstract, and (2) one or more of the terms be-
tween “dimensionality reduction”, “dimension reduction”,

“multidimensional projection”,and “multidimensional scaling”

are mentioned in the full text. We use IEEE Xplore and Wiley on-
line library to search papers published in major data visualization
journals and conferences (e.g., IEEE VIS, TVCG, CG&A, PacificVis,
EuroVis, CGF, IVIS). We filter out papers published before 2008,
the year t-SNE is announced. Then, we inspect each paper and
remove the papers that do not stay within our search scope from
our list. For example, papers that introduce novel DR techniques
[43], interaction techniques [29], or visual analytics techniques that
can be applied to any kind of scatterplot [36] are excluded. The list
of identified papers can be found in Appendix A.

Categorization. We categorize the identified papers according to
three criteria: (1) the DR techniques used, (2) the target analytic
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tasks supported by DR projections, and (3) the reasoning behind the
selection of specific DR techniques. We select the first two criteria
to investigate the extent to which DR techniques are misused for
tasks that are not suitable for them (H2). We select reasonings as
an additional criterion to check whether they justify the use of
t-SNE, UMAP, and other DR techniques in an inappropriate way
(H3). We follow the thematic coding process for the categorization.
To begin with, two coders interdependently categorize the papers.
Then, they merge and revise their categorizations through three
iterative discussions (Sect. 4.2).

Task suitability review. We identify the suitability of DR tech-
niques for analytic tasks by examining research that verifies the
weaknesses and strengths of different DR techniques [31, 33, 54, 74]
(Sect. 2.2). We depict the results in Sect. 4.3.

Quantitative Analysis. We quantitatively analyze the categorized
papers to verify H1 and H2. Detailed statistical results are presented
in Sect. 4.4.

4.2 Paper Search and Categorization Results

We retrieve 312 papers from online libraries in total. After screening
and filtering, we retain 136 papers. The categories we identify from
them are described below.

4.2.1 DR Techniques. We identify 18 DR techniques in total. Among
them, we find four commonly-used techniques (¢-SNE, UMAP, PCA,
and MDS) where the usage of each technique is more than 20 times.
The other 14 techniques are used fewer than five times each, and
we categorize them all under “others”

4.2.2  Analytic Tasks. Our review reveals that analytic tasks using
DR can be divided into seven categories (Fig. 2). Detailed descrip-
tions of each task are as follows.

Neighborhood identification. This task aims to find data points
similar to a target point based on the proximity within the pro-
jection. Since neighborhood identification supports many other
analytic tasks, such as cluster identification, preserving local neigh-
borhood structure is often considered the most important criterion
when evaluating DR projections [31, 51, 56].

Outlier identification. This task is about identifying outliers
within projections. Analysts often count the number of outliers
in the data [20] or determine whether a point is a cluster mem-
ber or outlier [74]. The task is typically leveraged for examining
the quality of class labelings by identifying points that have high
uncertainty about their class membership [28].

Cluster identification. This task involves identifying clusters
within DR projections. Analysts typically count the number of
clusters [20] or label clusters interactively using selection tools
such as lasso or box-shaped brushes [15, 49, 74]. This task often in-
cludes investigating subclusters within existing clusters [20]. Visual
analytics systems often provide auxiliary visualizations to show
detailed information about the identified clusters [10, 47].

Point distance investigation. Similar to the cluster distance inves-
tigation task, this task investigates the distance between data points
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Table 1: The coverage of analytic tasks using DR (rows) by
references (columns). We represent the references using the
last name of the first author. (Xia: Xia et al. [74], Ete.: Etemad-
pour et al. [20], Bre.: Brehmer et al. [7], Non.: Nonato and
Aupetit [56], Sed.: Sedlmair et al. [61]), Cas. : Cashman et al.
[8]

Task ‘ Xia Ete. Bre. Non. Sed. Cas.

Neighborhood Identification .
Outlier Identification

Cluster Identification . .
Point Distance Investigation

Class Separability Investigation .

Cluster Distance Investigation

Cluster Density Investigation

as a proxy for their high-dimensional dissimilarity. It can be inter-
preted as a “continuous” version of the neighborhood identification
task.

Class separability investigation. This task investigates how dis-
tinctly different classes are separated in the projections, where the
classes are color-coded. The task is commonly performed when DR
techniques are employed to explain the behavior of a supervised
machine learning model, particularly to illustrate how the model
distinguishes between different classes [59, 62].

Cluster distance investigation. This task uses the distance be-
tween well-separated clusters as a proxy for their similarity in
the original high-dimensional space. The clusters can be explicitly
labeled (i.e., color-coded) or implicitly represented by data distribu-
tion [61].

Cluster density investigation. This task identifies and compares
the density of clusters using cluster density as a proxy for the
variability of data points within each cluster [54].

Task coverage validation. To validate the comprehensiveness of our
categorization, we examine whether the analytic tasks in our list
are included in prior task taxonomies within the visualization field.
We review Etemadpour et al. [20], Xia et al. [74], Brehmer et al. [7],
Nonato and Aupetit [56], Sedlmair et al. [61], and Cashman et al. [8].
We find that all tasks are covered by at least two previous studies
(Table 1), confirming that our categorization covers all important
tasks in DR.

4.2.3 Reasonings. We identify seven large categories of reasoning
used to justify the selection of DR techniques. We define each rea-
soning in Table 2. It is worth noting that a substantial amount of
papers (44%; Fig. 6) do not mention specific reasoning. We addition-
ally categorize these papers as “No reason”.

Faithfulness. Researchers justify the usage of DR techniques based
on their faithfulness, or the capability to accurately represent the
original structure of the high-dimensional data without distortions.
This reasoning mostly relies on references to benchmark studies
that examine the faithfulness of DR techniques [19, 74]. One notable
finding is that researchers often cite the original papers introducing
DR techniques to support claims about their capability to preserve
global structure, e.g., the original UMAP paper [48], which is not
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(a) Tasks aligning with Local Techniques (t-SNE, UMAP)
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(b) Tasks aligning with Global Techniques (PCA, MDS)
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Figure 2: Illustrations of the analytic tasks using DR and their alignment to local and global DR techniques. Our literature
review identifies seven types of analytic tasks using DR. #-SNE and UMAP are suitable for neighborhood identification, outlier
identification, and cluster identification tasks but inappropriate for other tasks.

Table 2: The definition of the reasonings that we identify from the literature review (Sect. 4.2.3) Except for extensibility and

simplicity, all reasonings are leveraged to justify the use of +-SNE and UMAP.

Reasoning Definition

Faithfulness The degree to which DR techniques accurately represent the original structure of the high-dimensional data without distortions.
Popularity The degree to which DR techniques are widely known and used by practitioners in the visual analytics field.

Scalability Computational efficiency in executing DR techniques.

Interpretability The degree to which DR techniques yield visually distinct, analyzable clusters, enabling clear explanation of the data.

The degree to which DR techniques produce projections that are stable against hyperparameter change or the stochastic nature of DR.

Stability
Extensibility The degree to which DR techniques can be adapted or expanded to accommodate diverse data conditions or input formats.
Simplicity The degree to which practitioners can readily understand and apply DR techniques.

always correct [16, 31, 36, 54, 74]. We also find that several papers
claim the faithfulness of UMAP without references.

Popularity. Researchers justify the use of DR techniques based
on their popularity, which indicates the degree to which the tech-
niques are widely acquainted and used by practitioners in the visual
analytics field. For example, papers mention employing ¢-SNE be-
cause it is a “default option” in visualizing high-dimensional data
or is “widely recognized” by the research community. These papers
also highlight specific research communities, such as biology, com-
puter vision, and document clustering, where these techniques are
commonly used [8].

Scalability. The use of DR techniques is also justified by their
computational efficiency, which enhances the responsiveness of
visual analytics systems. For example, papers state that efficient
GPU implementations [55, 58] facilitate the effectiveness of DR
techniques.

Interpretability. Researchers use DR techniques because they
enable a clear explanation of the data with projections that contain
visually distinct and, thus, analyzable clusters. This finding aligns
with the work by Morariu et al. [52] and Doh et al. [17], in that they
also identify clear cluster separation as a key factor influencing the
preference of DR projections.

Stability. Researchers justify the selection of DR techniques by
highlighting their stability (i.e., the degree to which DR techniques
produce projections that are stable against hyperparameter change
or the stochastic nature of DR) as a means to improve the repro-
ducibility of their research. For example, one paper argues that
t-SNE is stable due to its non-convex optimization [2].

Extensibility. We find that researchers justify the use of DR tech-
niques based on their extensibility or their ability to adapt or expand
to accommodate diverse data conditions or input formats. For ex-
ample, some papers use DR techniques because they are parametric,
i.e., support new data points to be dynamically projected after initial
projection [60], particularly for analyzing streaming, online data.

Simplicity. A few papers mention that they select DR techniques
that are simple and thus can be easily understood and applied by
practitioners. Among the four major techniques, only PCA has been
explicitly justified by this reasoning.

4.3 Suitability of DR Techniques to Analytic
Tasks

We assess the suitability of four major DR techniques (+-SNE, UMAP,
PCA, and MDS) to the analytic tasks identified in Sect. 4.2.2. This
is done by revisiting previous studies that evaluate DR techniques
and analyze the alignment between the DR techniques and analytic
tasks (Sect. 2.2). This analysis helps examine whether researchers
are applying DR to tasks that are suitable (H1). Here, we define that
a DR technique is suitable for an analytic task if it preserves the
structural characteristics corresponding to that task. This means
that analytic tasks can be reliably conducted when suitable DR
techniques are used.

4.3.1 Tasks Suitable for t-SNE and UMAP. t-SNE and UMAP fo-
cus on preserving local neighborhoods by positioning neighbor-
ing points close together in the projection while separating non-
neighboring points. They are thus commonly referred to as local
techniques. Several studies demonstrate that they show state-of-
the-art performance in preserving local structures, both empirically
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[19, 31, 51] and theoretically [45]. We categorize the following tasks
that are suitable for t-SNE and UMAP.

Neighborhood identification task is more suitable for t-SNE
and UMAP. As aforementioned, :-SNE and UMAP directly aim
to preserve local neighborhood structure. This makes them better
suited for neighborhood identification tasks than alternative tech-
niques by design [1, 33, 68, 78], which also have been empirically
validated [31, 51].

Outlier identification task is more suitable for t-SNE and
UMATP. Since projections generated by local techniques clearly
distinguish neighboring and non-neighboring points, they can ef-
fectively separate outliers from clusters. Xia et al. [74] empirically
validate that t-SNE and UMAP are the most effective DR techniques
in supporting the outlier identification task, outperforming alterna-
tive techniques like PCA.

Cluster identification task is more suitable for #-SNE and
UMAP. As t-SNE and UMAP locate neighboring points close and
non-neighboring points far away [31, 51, 68], they clearly represent
individual high-dimensional clusters as 2D clusters, thus suitable
for the cluster identification task. The recent user study by Xia et
al. [74] shows that the participants perform best when identifying
clusters with t-SNE and UMAP projections.

4.3.2  Tasks Suitable for PCA and MDS. PCA and MDS are DR
techniques that are more effective in preserving global pairwise
distances between data points compared to local techniques like
t-SNE and UMAP [31, 56, 63, 67, 74]. They are usually referred to
as global techniques. The following tasks are suitable for these DR
techniques.

Point distance investigation task is more suitable for PCA
and MDS. These techniques are designed to directly preserve the
pairwise distance structures more effectively compared to local
techniques. They are thus more suitable than -SNE and UMAP in
investigating distances between data points (Fig. 1 dots and dia-
monds). Several studies [1, 31, 51] propose techniques that improve
UMAP in preserving global pairwise distances between points, such
as UMATO [31] and TriMap [1].

Class separability investigation task is more suitable for PCA
and MDS. The superiority of PCA and MDS in preserving distances
between data points makes them more precisely exhibit the sepa-
rability between class labels [33, 72, 73]. For example, t-SNE and
UMAP are widely reported to exaggerate class separation com-
pared to other techniques [3, 5, 6, 33]. Wattenberg et al. [72] show
that hyperparameter choices can significantly distort the global
relationship between classes in t-SNE, including their separability.

Cluster distance investigation task is more suitable for PCA
and MDS. PCA and MDS better preserve pairwise distances be-
tween points within each cluster compared to alternatives, making
the inter-cluster distances in the resulting projections meaningful.
These techniques are thus suitable for tasks involving cluster dis-
tance analysis. Many computational benchmarks have validated the
superiority of PCA and MDS in supporting the cluster distance in-
vestigation task [31, 33, 51, 69, 71]. This implies the appropriateness
of these techniques for supporting cluster distance investigation.
Xia et al. [74] empirically show that global techniques like PCA
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Figure 3: The trend of accumulated number of papers that
use (a) or misuse (b) of four major DR techniques. We collect
papers published from 2008, the year t-SNE is introduced.
Note that UMAP’s data also starts from the year it is released
(2018). [This figure is interactive in Adobe Acrobat reader,
where the underlined texts can be clicked]

enable users to perform this task more accurately than local tech-
niques. In contrast, Wattenberg et al. [72] and Coenen et al. [16]
also inform that the distance between clusters lacks meaning in
t-SNE and UMAP projections, respectively.

Cluster density investigation task is more suitable for PCA
and MDS. These techniques depict the similarity between data
points as low-dimensional proximity and thus can more sensitively
depict the differences in cluster densities. In contrast, local tech-
niques like +-SNE and UMAP poorly reflect their true similarity
in high-dimensional space [1, 31, 54] as they only focus on neigh-
boring points. As a result, t-SNE and UMAP projections poorly
represent cluster density (Fig. 1), which motivates the development
of improved techniques such as den-SNE and densMAP [54]. The
superiority of global techniques in supporting the density investi-
gation task is also validated by Xia et al. [74] through user studies
and Jeon et al. [33] via case studies.

4.3.3  Validity of the Suitability Analysis. One notable finding in
our suitability analysis is that +-SNE and UMAP perform better on
all “identification” tasks while PCA and MDS excel at “investiga-
tion” tasks. This result aligns with the fundamental differences in
how these methods interpret distances. t-SNE and UMAP priori-
tize preserving local neighborhood structures by effectively treat-
ing similarity as a binary function (neighbors or non-neighbors),
making them well-suited for tasks that require identifying distinct
clusters or groups. In contrast, PCA and MDS interpret distances
as continuous values, enabling more accurate interpretation of rel-
ative distances between points. This finding supports the validity
of our task categorization in capturing the alignment between DR
techniques and the tasks that are suitable to.
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Figure 4: The ratio of appropriate use and misuse of DR tech-
niques by analytic tasks. DR is appropriately used for tasks
that align with local techniques (top 3) but not for those that
align with global techniques (bottom 4). This result indicates
that local techniques (e.g., --SNE, UMAP) are overtrusted even
for tasks that are not suitable. Papers are marked as “fully
misused” if all tasks targeted by the paper are not supported
by the employed DR technique. Papers with partial support
are marked as “partially misused.”

4.4 Findings

We present the findings from the quantitative analysis of the iden-
tified papers (Sect. 4.2). We reveal that -SNE and UMAP are the
most commonly adopted DR techniques (H1). Yet, researchers often
utilize them across any tasks, making them simultaneously the
most commonly misused DR techniques (H2). We also observe that
many papers leverage t-SNE and UMAP without justifications or
with improper reasonings (H3).

(Finding 1) t-SNE and UMAP dominate the use of DR. While
the number of visual analytics papers using DR has increased over
the years, this growth is largely driven by t-SNE and UMAP (Fig. 3;
H1). t-SNE, for example, appears in more than half of the identified
papers (75 out of 136), more than twice as often as the runner-
up. UMAP is used in 31 papers. However, UMAP’s adoption is
increasing at a much steeper rate compared to PCA and MDS,
enabling it to achieve parity with these established techniques
within only six years. These findings highlight that misusing ¢-SNE
and UMAP can have a more harmful impact than misusing other
techniques.

(Finding 2) -SNE and UMAP are used for any tasks. We iden-
tify that t-SNE and UMAP are commonly used for both suitable and
unsuitable tasks, confirming H2. For each analytic task, we com-
pute the proportion of papers that employ suitable DR techniques
relative to all papers addressing the task. As a result (Fig. 4), we find
that tasks supported by local techniques have a high proportion
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Figure 5: The number of appropriate use and misuse of DR by
techniques (left) and their ratio (right). As with Fig. 4, papers
are marked as “fully misused” and “partially misused” if
all tasks targeted by the paper are entirely or partially not
supported by the used DR techniques. The analysis reveals
that t-SNE and UMAP dominate the misuse of DR.

of proper usage. However, tasks requiring global techniques have
a substantially lower rate of proper usage. This indicates that re-
searchers appropriately employ local techniques (¢-SNE and UMAP)
when required, while also correctly avoiding global techniques for
these tasks. However, tasks requiring global techniques have a sub-
stantially lower rate of proper usage, indicating that t-SNE and
UMAP are misused even for unsuitable tasks.

This tendency makes t-SNE and UMAP to dominate the misuse
of DR techniques in practice. We find that ¢-SNE is the most widely
misused DR technique in our list of papers (Fig. 5a). Regarding
UMAP, we observe that its misuse has recently increased rapidly,
making it the runner-up (Fig. 3b). We also find that UMAP has the
highest misuse-to-usage ratio among the four major DR techniques
(Fig. 5b). In summary, t-SNE and UMAP are misapplied more fre-
quently than other techniques, underscoring the need for increased
efforts to address these misuses.

In addition, we observe that a similar pattern persists when we
exclude papers published before 2016 and 2019—the years when
two influential papers guiding researchers on the use of t-SNE
and UMAP are released [16, 72] (Appendix C). This indicates that
the misuse of t-SNE and UMAP persists despite existing efforts to
inform practitioners how to use these techniques properly.

(Finding 3) t-SNE and UMAP are used without reasonings or
with improper reasonings. We find that more than 40% of papers
do not explicitly justify their choice of DR techniques (Fig. 6; H3),
and this trend persists for -SNE and UMAP. These papers often
discuss the general need for DR or describe the techniques’ charac-
teristics rather than explaining why specific techniques are chosen.
This result implies that practitioners may perceive DR technique
selection—including the case of -SNE and UMAP—as requiring
less critical evaluation, suggesting a lack of clear understanding
of the appropriate way of using DR. Our subsequent interviews
(Sect. 5) further reinforce this observation in the context of -SNE
and UMAP usage.

We also identify that faithfulness is more widely used to justify
the use of t-SNE and UMAP compared to PCA and MDS, but is
referred to even when these techniques are misused (Fig. 6). This
result thus supports our implications that researchers often lack
proper understanding of DR; they may not know that #-SNE and
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Figure 6: The number of appropriate use and misuse of DR techniques by reasonings. The reasonings (x axis) are sorted in
descending order based on the number they are referenced to justify the use of ¢-SNE (leftmost chart).

UMAP are faithful in preserving local structure but not in global
structure (Sect. 4.3).

4.5 Takeaways
The following are key takeaways from our literature review.

Misuse of t-SNE and UMAP exists. We quantitatively verify that
t-SNE and UMAP are commonly misused in practice (Findings 2
and 3).

Researchers may have a limited understanding on how to
use DR properly. We find that researchers often use #-SNE and
UMAP without proper justification or regard them as faithful for
unsuitable tasks (Finding 3), implying limited awareness of various
DR techniques and their suitability to analytic tasks. Indeed, the
misuse of t-SNE and UMAP itself suggests that practitioners do
not know how to properly use DR. Our interview study (Sect. 5)
reaffirms this observation.

Researchers may lack the motivation to use t-SNE and UMAP
properly. Our review indicates that papers misusing ¢-SNE and
UMAP have passed peer review and been published in major vi-
sualization conferences and journals. This finding suggests that
reviewers frequently overlook the importance of using DR appro-
priately. Furthermore, the frequent absence of clear justifications
for selecting DR techniques (Finding 3) implies that researchers
often do not recognize the necessity of using DR properly.

5 Interview Study with Practitioners

We want to investigate why practitioners misuse t-SNE and UMAP
in practice ({@2)). To this end, we conduct interviews with practi-
tioners who regularly use DR techniques for their research or visual
analytics work. In the following sections, we first explain our study
design (Sect. 5.1). Then, in Sect. 5.2, we detail our findings. Finally,
we discuss the takeaways in Sect. 5.3.

5.1 Study Design

Participants and recruitment. We want to diversify our partici-
pants in terms of their experience on DR. We first aim to achieve
diversity in the domains in which participants work. To do so, we

recruit both visual analytics researchers and domain researchers
who have experience in visually analyzing and presenting their
data using t-SNE and UMAP. For visual analytics researchers, we
randomly select papers from our literature review (Sect. 4), pri-
oritizing diversity in target data and problem domains. We then
contact either the first or the corresponding author via email to
increase diversity in participants’ expertise and visualization liter-
acy. For domain researchers, we ensure that they are from distinct
disciplines without overlap. We recruit participants from a local
university through an internal web community. We also employ
snowball sampling [24] to expand our participant pool. In total,
we interview 12 participants (six visual analytics researchers and
six domain researchers) with diverse occupations and research
experience (Table 3).

Interview protocol. We interview participants in a semi-structured
manner. We first ask the participants to give consent for their partic-
ipation. While doing so, we clarify that the paper identifies potential
risks in the participants’ reasoning and emphasize that our research
is not meant to blame the participants or other researchers. We
then ask participants a series of questions. The questions mainly
ask the participants (1) their expertise in DR, ¢-SNE, and UMAP,
(2) their experience and justifications in using t-SNE and UMAP,
and (3) the difficulties that occur while using these techniques (our
questionnaire is in Appendix B). The interviews are conducted via
a recorded Zoom call, where we transcribe the interview using a
commercial speech-to-text service. We compensate participants
with the equivalent of 15 USD. All interviews are finished within
40 minutes.

5.2 Findings

(Finding 1) Practitioners have limited literacy on DR. We find
that the participants have difficulties in properly understanding not
only t-SNE and UMAP but also other DR techniques, aligned with
our takeaways from the literature review (Sect. 4.5). For instance,
five participants report difficulties in choosing the final projection
for deployment, as the outcomes vary significantly depending on
hyperparameter configurations. Three of these participants admit
that they are unsure of the proper way to set these hyperparameters.
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Table 3: The demographics of the participants in our interview study with practitioners. Our aim in recruiting participants is
to maximize diversity in research fields and experience (exp.). VA stands for visual analytics. We chronologically order the

participants based on the date of the interviews.

Occupation Age Gender Type exp.in VA exp.in DR Domain
P1 Professor 35 Male Visual Analytics Researcher 10 years 7 years
P2 Undergraduate Student 22 Female  Visual Analytics Researcher 2 years 1 year
P3 Research Scientist 30 Male Domain Researcher 6 years Computer Vision
P4 Research Scientist 30 Male Domain Researcher 4 years Signal processing
P5 Ph.D. Student 28 Female  Visual Analytics Researcher 6 years 5 years
P6 Ph.D. Student 28 Male Domain Researcher 4 years HCI
P7 Ph.D. Student 29 Male Domain Researcher 4 years Chemistry
P8 Ph.D. Student 24 Female  Visual Analytics Researcher 3 years 2 years .
P9 Research Scientist 30 Male Domain Researcher 7 years NLP
P10 MS Student 22 Male Visual Analytics Researcher 2 years 1 year .
P11 Staff Engineer 34 Male Visual Analytics Researcher 2 years 2 years
P12 Postdoctoral Researcher 34 Male Domain Researcher 4 years Bioinformatics

Second, participants often do not have sufficient knowledge on
alternative DR techniques. For example, four participants say they
are unaware of methods other than t-SNE, UMAP, and PCA, and
two of these participants mention that they can hardly tell the
differences among these three techniques.

We also noticed that practitioners’ limited literacy make them
“immune” to using t-SNE and UMAP for their research. Participants
mention that the popularity of -SNE and UMAP makes them less
likely to invite criticism of their analytic results or systems. For
example, three participants mention using UMAP because they
feel that using alternative techniques may subject their paper to
criticism from reviewers. One participant notes that UMAP is a
safe technique because it is the state-of-the-art technique. This
finding aligns with our observation that many papers we investigate
do not provide appropriate reasoning for using t-SNE and UMAP
(Sect. 4.4).

(Finding 2) Practitioners receive misleading suggestions. We
find that the misuse also occurs because practitioners regularly
receive potentially misleading suggestions to use t-SNE and UMAP.
We identify three primary sources:

Fellow researchers. Five participants indicate that their fellow re-
searchers recommend using t-SNE and UMAP. Two participants,
in particular, mention that they unreservedly follow recommen-
dations from their advisors or seniors. For example, a participant
comments: “My advisor reccommended UMAP, and I used it without
verification”.

Research papers. Two domain researchers state that they used t-
SNE and UMAP after they frequently encountered them in research
papers in their domains (bioinformatics and chemistry). One partic-
ipant, for instance, mentions that he regularly uses UMAP because
it is frequently cited in recent publications in his domain (bioinfor-
matics) for the same purpose he intends to use it for. This finding
resonates with the observation of Cashman et al. [8] that these
domains predominantly adopt t-SNE and UMAP over alternative
DR techniques.

Language models. Two participants mention that they ask large lan-
guage models (LLMs) to recommend a DR technique to use, where
the models suggest t-SNE, UMAP, and PCA. Both participants re-
port using ChatGPT for this purpose.

These suggestions can be misleading as they typically lack grounded
evidence. For example, research papers often misuse t-SNE and
UMAP (Sect. 4), so relying on these papers can lead to erroneous
applications of these techniques. Moreover, as LLMs are trained on
massive text corpora, their frequent recommendations of t-SNE and
UMAP can be interpreted as reinforcing practitioners’ bias toward
these techniques based on their popularity. Despite the existence
of materials informing the proper way of using DR (Sect. 2.2), prac-
titioners’ reliance on such misleading suggestions indicates their
insufficient motivation to engage with these resources.

(Finding 3) Practitioners often cherry-pick hyperparameters.
We observe one more misuse pattern: the cherry-picking of hy-
perparameters. Eight out of 12 participants report that they have
experience in manually tuning the hyperparameters of t-SNE and
UMAP. They report that they want to achieve either an interpretable
or aesthetically pleasing projection with well-separated clusters.
Four participants explicitly mention that they tune hyperparame-
ters without understanding their effect on projection results.

5.3 Takeaways

We identify three key takeaways from the interview study with
practitioners.

Practitioners lack understanding of how to use DR properly.
The interview study clearly confirms that practitioners have a lim-
ited understanding of DR. Many participants (1) hold erroneous
beliefs about the faithfulness of -SNE and UMAP (Finding 1), (2)
do not know how to select appropriate techniques (Finding 1), and
(3) do not know how to properly set hyperparameters (Finding 3).

Practitioners lack motivation to use DR properly. The inter-
view study suggests that practitioners are unaware of how to use
DR effectively and lack motivation to do so, aligning with our third
takeaway from the literature review (Sect. 4.5). For example, the
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Table 4: The demographics of the participants in our interview study with DR experts. Our aim in recruiting participants is to
maximize diversity in terms of research domain and seniority while maintaining their expertise level. Exp. and Pub. denote the
years of research experience and the number of publications related to DR, respectively.

‘ Occupation Age Gender Exp. Pub. Subdiscipline Venue of DR-related papers
P1 | Associate Professor 34 Male 12 >10 DR Faithfulness, Scalability TVCG, VIS, EuroVis
P2 | Associate Professor 48 Male 20 >10 DR Algorithm, Evaluation TVCG, VIS, CGF, EuroVis, C&G
P3 | Assistant Professor 39 Male 13 >10 DR Interpretation TVCG, VIS, CHI, CGF
P4 | Associate Professor 40 Male 20 >10 DR Interpretability, Evaluation TVCG, VIS, CGF, C&G
P5 | Assistant Professor 36 Male 11 4 Practical use of DR TVCG, VIS
P6 | Ph.D. Student 26 Male 4 3 DR Stability, Faithfulness TVCG, VIS
P7 | Ph.D. Student 26 Female 3 3 DR Faithfulness EuroVis, CGF
P8 | Ph.D. Student 28 Male 6 8 Visual analytics for DR TVCG, VIS, CHI

perception of t-SNE and UMAP as “immune to criticism” arises
from reviewers’ insufficient interest in the proper use of DR. The
limited understanding of DR (Findings 1 and 3) also suggests that
practitioners are often unconcerned with this issue.

6 Interview Study with DR Experts

We want to understand why previous efforts are not effective in
addressing the misuse ({8)), grounding our new suggestions to
remedy the problem (Sect. 7). To this end, we interview visualization
researchers who study DR as their main research topic. We first
discuss our study design in Sect. 6.1, then detail our findings and
takeaways in Sect. 6.2 and Sect. 6.3, respectively.

6.1 Study Design

Participants and Recruitment. We establish two objectives in
recruiting the expert researchers. First, we want our experts to
have a sufficient expertise on (1) the underlying mechanism of
DR and (2) how it is used in practice for visual analytics. Experts
without the former may struggle to understand essential concepts
to understand our problem, including the rationale behind different
DR techniques and their alignment to analytical tasks. Conversely,
experts without the latter may provide limited insights into ad-
dressing real-world misuse scenarios. Second, we want our pool of
experts to be sufficiently diverse in terms of their experience on
DR.

To achieve these goals, we recruit experts by randomly sending
emails to the authors of the papers that contribute to addressing the
misuse of DR, which we list in our related work section (Sect. 2.2.
Note that we contact one of the corresponding authors and the first
author to further diversify expertise and research experience. When
recruitment is declined, we sample a new author from the same
cluster and repeat the process. Table 4 depicts the demographics of
our experts.

Interview protocol. We conduct an interview individually with
each expert. One experimenter, the first author, manages all experi-
ments. After the experts sign the consent form, the experimenter
verbally describes the purpose of the experiment and how it will
proceed. Then, we share three misuse patterns we find from the lit-
erature review (Sect. 4) and the interview with practitioners (Sect. 5):

inappropriate selection of DR techniques, lack of proper justifica-
tions, and cherry-picking of hyperparameters. Subsequently, we
ask interviewees to complete the following questionnaires, asking
why the previous efforts in the literature to address the misuse have

hardly achieved the goal.

“Why do you think these misuses persist despite the large body

of literature that informs practitioners not to do?”

“Why do you think practitioners are not motivated to read ex-

isting materials?”
The expert answers each question verbally. We wrap up the inter-
view by requesting the experts to share their thoughts on how the
misuses can be addressed. We do not limit the interview duration
to fully elicit the experts’ insights, but all interviews end within 40
minutes. We compensate experts with the equivalent of 20 USD for
their participation.

6.2 Findings

All experts agree that misuse persists despite existing efforts and
share the following insights on underlying causes.

(Finding 1) Cultivating DR literacy is not easy. Experts note
that cultivating DR literacy is not easy, even for trained researchers.
Two experts especially mention that although survey papers exist to
comprehensively inform the way of using DR properly, even these
resources are difficult for novices to understand. One expert note
that understanding these survey papers ultimately requires reading
individual papers, which is a demanding task. This finding sug-
gests that existing efforts to instruct practitioners—organizing and
presenting information scattered in diverse papers [34] (Sect. 2.2)—
hardly reduce the inherent difficulty of learning DR.

(Finding 2) Libraries are promoting the misuse of #-SNE and
UMAP. Five experts note that highly polished and well-maintained
libraries that serve +-SNE! and UMAP? intensify the misuse. They
say that although practitioners want to test other DR techniques,
they can hardly find and execute implementations, coming back to
t-SNE and UMAP. Of these, three experts note the need for new
libraries that serve diverse DR techniques. They mention that such
libraries will help people be aware of diverse DR techniques and
properly use them. P8 states: “Good libraries, like scikit-learn, helped

Uhttps://scikit-learn.org/stable/modules/generated/sklearn.manifold. TSNE.html
2https://umap-learn.readthedocs.io/en/latest/
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popularize t-SNE and UMAP. Similarly, if other techniques have good
libraries, they will likely be used more often.” Two experts also men-
tion that not only DR techniques but also other infrastructures for
utilizing DR, such as preprocessing or evaluation metrics, should
be provided as libraries.

(Finding 3) Intrinsic bias of human perception is promoting
the misuse of -SNE and UMAP. Two experts causally mention
the possibility that previous attempts fail because there exists an
intrinsic bias towards well-separated clusters. They note that in
such a case, it is natural for -SNE and UMARP to be widely used
because these techniques exaggerate cluster structure by design
[32, 45]. This finding aligns with the recent finding of Doh et al.
[17] that there exists a perceptual factor that makes practitioners
prefer DR projections with clearly separated classes or clusters.

(Finding 4) Mitigating bias is an urgent problem. Three experts
note that we should urgently address these misuses because they
may compromise the reliability of scientific discoveries based on
visual analytics. P5 states: “False positives (due to the misuse of DR)
are undoubtedly occurring somewhere at this very moment.” Two
experts also mention that the urgency intensifies because misuses
can propagate through citation networks; they emphasize that inter-
vention is needed before these misuses become de facto standards.
Both experts note that +-SNE and UMAP appear to have already
approached this status, warning that mitigation will become in-
creasingly difficult over time.

6.3 Takeaways

We should move beyond papers. Through the interviews, we
identify the limitations of conventional efforts to mitigate bias,
which are mostly based on academic papers (Finding 1). Moreover,
experts emphasize the need for technical solutions to mitigate this
bias (Finding 2). This suggests that we need to invest efforts that
extend beyond traditional academic approaches to make proper use
of DR as the norm.

We should act immediately. The interview suggests that imme-
diate action is necessary to address the misuse of t-SNE and UMAP.
Experts warn that the misuse may already have passed the point of
no return (Finding 4).

7 Recommendation: Delegation to Machines

Based on our study findings, we cautiously but strongly suggest
delegating the configuration of DR for visual analytics to ma-
chines. Imagine VoyagerDR, a hypothetical programming library
with comprehensive knowledge of DR. This library is equipped with
a function that, when given a high-dimensional dataset and a speci-
fied analytic task, automatically predicts and recommends ideal DR
techniques and hyperparameters that maximize task performance.
In theory, VoyagerDR would always guarantee the proper use of
DR and enhance the reliability of visual analytics.

However, while appealing in concept, adopting VoyagerDR may
be controversial because it may harm user agency. With VoyagerDR,
users may heavily rely on this library and their understanding of
DR will remain limited. This is problematic because finding an op-
timal DR projection is not solely about selecting the DR technique
that best aligns with the target task; it also depends on factors
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such as available computational resources, time constraints, and
the practitioners’ priorities—such as whether faithfulness, stabil-
ity, or efficiency takes precedence. For example, in time-sensitive
scenarios, it might be more effective to bypass hyperparameter
optimization in favor of faster system responsiveness. In this sense,
even with such an idealized DR oracle, we should not abandon
efforts to enhance practitioners’ literacy as a path toward more
reliable visual analytics.

We therefore call for investigating approaches that enable prac-
titioners to benefit from Voyager while simultaneously cultivating
their DR literacy. One way to achieve this is to make VoyagerDR
more explainable. For example, enabling a verbose option by de-
fault to reveal how the library operates would be beneficial. Further-
more, creating an Explainer [39, 46], an interactive visualization
that explains both VoyagerDR’s operational processes and proper
DR usage, will also be a plausible direction. Reflecting on the take-
aways from the expert interviews, we call upon the community to
pursue this direction—without delay (Sect. 6.3).

8 Discussions

Our discussion addresses three key questions regarding the reliable
use of DR and other machine learning techniques.

8.1 Is VoyagerDR Feasible?

While VoyagerDR (Sect. 7), a DR oracle that automatically predicts
optimal DR projections for a given dataset and task, may appear
challenging to realize, we believe the necessary knowledge and tech-
nology already exist for its implementation. First, the visualization
research community has accumulated substantial understanding
about the mapping between techniques and suitable tasks through
numerous benchmark studies [4, 20, 74] and guidelines for proper
DR technique usage [16, 72] (Sect. 2.2). The primary challenge lies
in formalizing these guidelines into a format that VoyagerDR can
interpret—a task for which existing approaches like Draco [53]
provide inspiration. Furthermore, selecting appropriate models or
hyperparameters based on dataset characteristics is a widely stud-
ied problem in machine learning under the umbrella of AutoML
[21]. Indeed, recent work by Jeon et al. [35] successfully predicts the
most accurate technique by measuring dataset complexity. We ar-
gue that these approaches can be extended to encompass a broader
range of techniques and, ultimately, the full hyperparameter space.

Given this feasibility, we envision the realization of VoyagerDR
in the near future.

8.2 Is DR Misused in Other Fields?

This research reviews relevant literature in the field of visual an-
alytics. By doing so, we reveal that visual analytics researchers
often use t-SNE and UMAP inappropriately. However, while the
same issue is present in other research fields (e.g., bioinformatics
[9, 44, 54]), our findings may not effectively reach researchers in
these areas due to our emphasis on visual analytics. Our interviews
with domain researchers help address this gap (Sect. 5), but they
cover only four areas: machine learning, HCI, chemistry, and bioin-
formatics. Examining the use of DR in various domains beyond
visualization could help us convey our message to a wider audi-
ence and uncover more broadly applicable solutions. Cashman et al.
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[8] recently present a seminal step in this direction, focusing on a
limited set of domains (Physics, Chemistry, Biology, and Business).
We encourage continued efforts to broaden the impact of research
artifacts from the visualization community.

8.3 Are We Properly Using Machine Learning
for Visual Analytics?

In this research, we find that practitioners frequently misuse t-SNE
and UMAP, often considering these techniques as one-size-fits-all
solutions. Even our interview participants, who are visualization
researchers, are not immune to these issues.

We need to investigate whether a similar tendency exists in the
application of other machine learning techniques for visual analyt-
ics. For instance, although we cannot always guarantee the faithful-
ness of LLMs (e.g., due to hallucinations [76]), they are commonly
used in many applications without proper performance evalua-
tion, justified by their perceived faithfulness in creating human-like
responses [25]. Investigating whether LLMs are applied to appro-
priate tasks and properly parameterized is thus necessary. This
is especially crucial since LLMs are not exclusively employed by
experts but are increasingly used by non-experts.

Pursuing this direction is important given that advanced machine
learning techniques like LLMs are becoming part of our everyday
visual analytics [13]. As our research does for t-SNE and UMAP,
such an examination will help develop solutions that support the
proper use of these techniques and stimulate related discourse,
contributing to enhancing the reliability of visual analytics.

9 Conclusion

We critically examine the misuse of +-SNE and UMAP in visual
analytics. Through the literature review and the interview study,
we verify the existence of the misuse and also reveal why such
misuse occurs. We reveal that the misuses occur mainly because of
the lack of discourse on the appropriate use of DR. Then, through
the interview with DR experts, we discovered that existing attempts
fail to motivate practitioners to cultivate their DR literacy. Based on
these findings, we reluctantly suggest considering the automation
of selecting DR projections in visual analytics as a potential solution
to address misuse. Our study not only contributes to addressing
the misuse of t-SNE and UMAP, but also encourages broader dis-
cussions on adopting a more critical perspective when applying
machine learning techniques.
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