
Jeongin Park, Seoul National University
Max Plank Computing and Data Facility
2023.09.11 ~ 2023.12.04

Analysis of Performance Data
2023.12.05 Mon

Tables of Content

• Project Goal

• Information about Data

• Measurement of Performance: Roofline Model

• Some Trials: PCA

• Random Forest

• What is Random Forest?

• Training Random Forest

• Interpretation of Results

• Conclusion

Project Goal

• Measurement In addition to the benefits for the student in terms of learning and experience, we'd aim towards useful
production outcomes, for example:

identification of 'good' or 'bad' jobs, i.e. improving the 'black sheep' functionality in Splunk, alerting about
'bad' jobs in 'near time’

anomaly detection, related to 'good' and 'bad' jobs, identifying performance drops for jobs that had better
performance previously

identification of the bottleneck for specific jobs and applications: compute, memory bandwidth, io,
network, etc., helping to identify the actual requirements of our application mix for (future) HPC systems

fingerprinting of unknown applications, e.g. shedding light at the famous 'a.out' or 'python' mystery

Information about Data

• Two types of data: Job-Summary, Time-resolved data

• Job summary: collected after job ended

AI,AVG_LOAD,AVG_O_PTMP,AVG_O_U,AVG_R_NET,AVG_R_PTMP,AVG_R_U,AVG_W_NET,AVG_W_PTMP,AVG_W_U,FP_SCALAR,FP_VECTOR,GF,HPCMD_CHECKPOINT,MEM_PEAK,PEAK_LOAD,PEAK
_O_PTMP,PEAK_O_U,PEAK_R_NET,PEAK_R_PTMP,PEAK_R_U,PEAK_W_NET,PEAK_W_PTMP,PEAK_W_U,SOCKET_BALANCE,VEC_RATIO,cores,elapsed,exe,exit_code,groupid,host,iter,jobend,jobid,jo
bstart,maxrss,min_empty_cores,njobsteps,nnodes,partition,timelimit,userid,datetime,timestamp

• Time-resolved data: collected every 4 min. From each nodes, sockets, I/Os, GPU, etc.

AI,ALGO_INT,AVG_LOAD,AVG_O_PTMP,AVG_O_U,AVG_R_NET,AVG_R_PTMP,AVG_R_U,AVG_W_NET,AVG_W_PTMP,AVG_W_U,BR_MISS_RATIO,CACHE_MISS_RATIO,FORT_BUFFERED,FP_SCALAR,FP_
VECTOR,GF,GFLOPS,HPCMD_CHECKPOINT,IPC,I_MPI_EXTRA_FILESYSTEM,I_MPI_HYDRA_BOOTSTRAP,I_MPI_LINK,I_MPI_PMI_LIBRARY,I_MPI_ROOT,LOADEDMODULES,MEM_BW,MEM_PEAK,MKLRO
OT,MKL_DOC,MKL_HOME,MODULESHOME,NodeRSS,OMP_NUM_THREADS,OMP_STACKSIZE,PEAK_LOAD,PEAK_O_PTMP,PEAK_O_U,PEAK_R_NET,PEAK_R_PTMP,PEAK_R_U,PEAK_W_NET,PEAK_

W_PTMP,PEAK_W_U,PMI_FD,PMI_JOBID,PMI_RANK,PMI_SIZE,PWD,PYTHONPATH,PYTHONSTARTUP,SLURM_CELL,SLURM_CLUSTER_NAME,SLURM_CONF,SLURM_CPUS_ON_NODE,SLURM_CPU_B
IND_TYPE,SLURM_CPU_BIND_VERBOSE,SLURM_DISTRIBUTION,SLURM_EXPORT_ENV,SLURM_GET_USER_ENV,SLURM_GTIDS,SLURM_JOBID,SLURM_JOB_ACCOUNT,SLURM_JOB_CPUS_PER_NO
DE,SLURM_JOB_CPUS_PER_NODE_PACK_GROUP_0,SLURM_JOB_GID,SLURM_JOB_ID,SLURM_JOB_NAME,SLURM_JOB_NODELIST,SLURM_JOB_NUM_NODES,SLURM_JOB_PARTITION,SOCKET_
BALANCE,VEC_RATIO,awake,branch_misses,branches,cache_misses,cache_references,cores,cpu,cycles,elapsed,empty_cores,environment,epoch,exe,exit_code,fp_128d,fp_128s,fp_256d,fp_256s,fp_51
2d,fp_512s,fp_d,fp_s,fsid,gpfs_bytes_read,gpfs_bytes_written,gpfs_closes,gpfs_inode_updates,gpfs_opens,gpfs_reads,gpfs_writes,groupid,host,instructions,iter,jobend,jobid,jobname,jobstart,lib,load_15min
,load_1min,load_5min,loadedmodules,major_faults,maxrss,min_empty_cores,minor_faults,njobsteps,nnodes,nodeid,ntasks,ntasks_per_node,omp_num_threads,opmode,partition,path,realmemory,rx_bytes,rx

_packets,sockets,threadspercore,timelimit,total_threads,tx_bytes,tx_packets,type,userid,_time

Pre-processing data

• Raw Data

• Several lines for each timestamp

• What we want: One line for each timestamp, one .csv file for each job

Pre-processing data

• Several types of data for each timestamp and different columns for each type

• 'thread' 'exe' 'network' 'memory' 'perf' 'gpfs' 'env' 'libs' ‘job_start', ‘job_summary’

• different socket names, different node names for same timestamp

• ‘node_name/<info>’, ’node_name/socket_name/<info>’ or ‘I/O_name/<info>’ format

• Klaus used it to export data in 2d format

Pre-processing data

• For training, One Line per Job

• Statistics

• 'min', 'max', 'mean', 'std', 'skew', 'p_5th', 'p_25th', 'p_50th', 'p_75th', ‘p_90th'

• Windows

Roofline Model

• Measurement of Computer Performance

• Can be calculated with Job-Summary data

• Two types of ceiling

• One by memory bandwidth

• Other by processor’s performance

• Classified jobs into three: Good, Bad, Ugly

Arithmetic Intensity

G
FL

O
PS

max GFLOPS

max MEM Bandwidth * A
I

Several Methods we tried…
PCA

Why Random Forest

• PCA: just perturbing the data dimension. De-correlate correlated data and get new features

• We cannot see which feature is important and which is not

• Though we can see that it differentiates different Executables

• Random Forest: preserve features, methods to see compare feature importance

What is Random Forest

Ensemble of Decision Trees

• Decision Tree: used in classification problem

• Ensemble: made up of a set of classifiers—e.g. decision trees—and their predictions are aggregated to identify the most popular result

• Randomly select some data, Train several different trees independently, Aggregate results

Training of Random Forest

• Packages used: sklearn.ensemble.RandomForestClassifier

• Things to Consider

• unbalanced dataset —> SMOTE to balance dataset

• Good vs. Bad vs. Ugly

• Memory-bounded vs. Compute-bounded

• CPU vs. GPU: different columns —> Train separate model

• Test Result

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble

Which Feature is Important
For the Random Forest (CPU)

• Feature Importance and Permutation Importance

Which Feature is Important
For specific job (CPU)

• Use several methods and compare the result

• SHAP: the average expected marginal contribution of one feature

• LIME: Local Interpretable Model-Agnostic Explanations. train explainable model that gives similar result to original model in the local

• Random method (proposed by Sebastian): put randomized values into each column, iterate several hundred times, and calculate
mean reduction in prediction probability

SHAP LIME Random Method

Features seem to be correlated

• Features seem to be highly correlated —> Group features with correlation coefficient

• by performing hierarchical clustering on the Spearman rank-order correlations

Which Feature is Important
For the Random Forest

• Feature Importance and Permutation Importance

Which Feature is Important
For specific job

SHAP LIME Random Method

GPU Result
For the Random Forest

Which Feature is Important
For specific job

• SHAP result for all jobs

Additional testing

• Check if Random Forest can predict (i.e., check if it gives consistent result even though job is not over)

• Train only with two or three columns (cache_miss_ratio or FP_VECTOR) —> test accuracy over 95% (original model: 0.982)

• Other methods: SVM(Support Vector Machine), kNN(k Nearest Neighbors)

• Similar, but different results: all affected by ‘one specific column’, but that is different

• Check sensitivity of the Random Forest

• Change number of trees, minimum data number for nodes or to split, etc.

• Result: Always got similar result —> Model is Robust

Conclusion

• identification of 'good' or 'bad' jobs: by Roofline Model

• identification of the bottleneck for specific jobs and applications: by Random Forest, one feature important, dominant for the
performance rating

• fingerprinting of unknown applications, e.g. shedding light at the famous 'a.out' or 'python' mystery: by PCA can differentiate types of
executables

• Additionally, neatly modularized all codes I used, so that further studies can be continued

Further Direction

• Check why different methods (SVM, kNN) gives different results. Check prediction quality of those methods

• Look at the data itself thoroughly and see if they are all affected by ‘cache_misses’

What I learned here

• Things related to computer science

• Concepts of computer architecture and computer performance

• Multi-processing

• What I can do with models (We used model not only to just ‘predict’, but also to interpret high dimensional data)

• How to interpret results from models (feature importances, SHAP, Lime etc.)

• What Supercomputer looks like!

• My English got better :)

• Meet new people from diverse countries. It was very fun listening to different stories and share experiences!

